Non-symmetric convex domains have no basis of exponentials

نویسنده

  • Mihail N. Kolountzakis
چکیده

A conjecture of Fuglede states that a bounded measurable set Ω ⊂ R, of measure 1, can tile R by translations if and only if the Hilbert space L(Ω) has an orthonormal basis consisting of exponentials eλ(x) = exp2πi〈λ, x〉. If Ω has the latter property it is called spectral. We generalize a result of Fuglede, that a triangle in the plane is not spectral, proving that every non-symmetric convex domain in R is not spectral. §0. Introduction Let Ω be a measurable subset of Rd of measure 1 and Λ be a discrete subset of Rd. We write eλ(x) = exp 2πi〈λ, x〉, (x ∈ R ), EΛ = {eλ : λ ∈ Λ} ⊂ L (Ω). The inner product and norm on L(Ω) are 〈f, g〉 Ω = ∫

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distances Sets That Are a Shift of the Integers and Fourier Basis for Planar Convex Sets

The aim of this paper is to prove that if a planar set A has a difference set ∆(A) satisfying ∆(A) ⊂ Z + s for suitable s than A has at most 3 elements. This result is motivated by the conjecture that the disk has not more than 3 orthogonal exponentials. Further, we prove that if A is a set of exponentials mutually orthogonal with respect to any symmetric convex set K in the plane with a smooth...

متن کامل

On a Problem of Turán about Positive Definite Functions

We study the following question posed by Turán. Suppose Ω is a convex body in Euclidean space Rd which is symmetric in Ω and with value 1 at the origin; which one has the largest integral? It is probably the case that the extremal function is the indicator of the half-body convolved with itself and properly scaled, but this has been proved only for a small class of domains so far. We add to thi...

متن کامل

Exponentials form a basis of discrete holomorphic functions

We show that discrete exponentials form a basis of discrete holomorphic functions. On a convex, the discrete polynomials form a basis as well.

متن کامل

Boundary Behavior of Harmonic Functions for Truncated Stable Processes

For any α ∈ (0, 2), a truncated symmetric α-stable process in R is a symmetric Lévy process in R with no diffusion part and with a Lévy density given by c|x| 1{|x|<1} for some constant c. In [24] we have studied the potential theory of truncated symmetric stable processes. Among other things, we proved that the boundary Harnack principle is valid for the positive harmonic functions of this proc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998